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Abstract
In this paper, we explicitly compute the ζ -determinant of a Dirac Laplacian
with Atiyah–Patodi–Singer (APS) boundary conditions over a finite cylinder.
Using this exact result, we illustrate the gluing and comparison formulae for
the ζ -determinants of Dirac Laplacians proved by Loya and Park.

PACS numbers: 02.30.Lt, 02.30.Gp, 02.30.Tb

1. Introduction

The ζ -function technique of regularizing determinants entered the mathematical world in
Ray and Singer’s celebrated article [16] on the analytic torsion, and in the physics world
commencing with the groundbreaking works of Dowker and Critchley [6] and Hawking [9]
(for a recent review, see [10]). The power of this technique can be appreciated by the now
well-known fact that any quantum field theory can be renormalized to the theory of one loops
via ζ -regularization. Because of their facility in mathematics and physics, there has been
immense research in computing ζ -determinants under a variety of conditions, cf Elizalde
et al [8] for such techniques. Of particular importance is the Dirac Laplacian with nonlocal
Atiyah–Patodi–Singer (APS) boundary conditions, which arises in a variety of situations, for
instance, one-loop quantum cosmology [3–5], spectral branes [18] and the study of Dirac
fields in the background of a magnetic flux [2].

However, the value of the ζ -determinant for a Dirac Laplacian with APS boundary
conditions over a finite cylinder has remained an open question, partly because it is not
possible to compute the eigenvalues of the Dirac operator ‘explicitly’ under these conditions.
The main purpose of this paper is to answer this question and compute this ζ -determinant.
Because in general it is not possible to compute the eigenvalues of the Dirac operator explicitly,
we have to proceed using a totally different method from the conventional ones used to compute
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ζ -determinants. The method we use is the method of adiabatic decomposition, pioneered in
the work of Douglas and Wojciechowski [7] for the eta invariant, and by the second author and
Wojciechowski [15] for the ζ -determinant. The second purpose of this paper is to elucidate
the effectiveness of the adiabatic method in a concrete situation (see section 4).

Finally, we investigate the gluing problem for the ζ -determinant (see section 5), which
can be stated as follows: given a partitioned compact manifold M = M− ∪ M+ into manifolds
with boundaries, describe the ζ -determinant of a Dirac Laplacian on M in terms of the
ζ -determinants on M± with suitable boundary conditions. This gluing problem has
remained an open problem partly because of the highly nonlocal nature of the ζ -determinant
and its variation and partly because of the technical aspects inherent with the nonlocal
pseudodifferential boundary conditions required for Dirac type operators. In [12] we solve
this problem and the third purpose of this paper is to illustrate our gluing formula in the
concrete situation of a partitioned finite cylinder. We also illustrate the so-called comparison,
or relative invariant, formula proved in [14].

We now describe our set-up. Let DR : C∞(NR, S) → C∞(NR, S) be a Dirac type
operator where NR = [−R,R] × Y is a finite cylinder with R > 0, Y a closed compact
Riemannian manifold (of arbitrary dimension), and S a Clifford bundle over NR . We assume
that DR is of product form

DR = G(∂u + DY ) (1.1)

where G is a bundle automorphism of S0 := S|Y and DY is a Dirac operator acting on
C∞(Y, S0) such that G2 = −Id and GDY = −DY G. Since the finite cylinder NR has
boundaries, we have to impose boundary conditions. An important boundary condition for
applications is the nonlocal generalized APS spectral condition, which is defined as follows.
We assume that dim ker(G + i) ∩ ker(DY ) = dim ker(G − i) ∩ ker(DY ). Then we can fix two
involutions σ1, σ2 over ker(DY ) such that σ1G = −Gσ1 and σ2G = −Gσ2, and impose the
boundary conditions given by the following generalized APS spectral projections:

�σ1 = �> +
1 + σ1

2
�0 at {−R} × Y

�σ2 = �< +
1 + σ2

2
�0 at {R} × Y

(1.2)

where �>,�<,�0 denote the orthogonal projections onto the positive, negative and zero
eigenspaces of DY . We denote by DR,P the resulting operator with these boundary conditions,
that is

DR,P := DR : dom(DR,P ) → L2(NR, S)

where

dom(DR,P ) := {
φ ∈ H 1(NR, S)

∣∣ �σ1φ
∣∣
u=−R

= 0,�σ2φ
∣∣
u=R

= 0
}
.

Then the spectrum of the Dirac Laplacian D2
R,P consists of discrete real eigenvalues {λk}. The

ζ -function of D2
R,P is defined by

ζD2
R,P

(s) =
∑
λk �=0

λ−s
k

which is a priori defined for �(s) � 0 and has a meromorphic extension to C with 0 as a
regular point. Then the ζ -determinant of D2

R,P is defined by

detζD2
R,P := exp

(−ζ ′
D2

R,P

(0)
)
.
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As we already mentioned, since we imposed APS spectral boundary conditions, it is not
possible to compute the eigenvalues {λk} explicitly, so there is no direct way to compute the
ζ -determinant detζD2

R,P from the eigenvalues. However, using adiabatic and gluing techniques
proved in [15, 11, 13], we compute detζD2

R,P , which we now explain. We denote by (σ1σ2)− the
restriction of σ1σ2 to ker(G + i) ∩ ker(DY ). For a linear operator L over a finite-dimensional
vector space, det∗(L) denotes the determinant of the invertible operator (L|ker(L)⊥). The
following theorem is the main result of this paper.

Theorem 1.1. The following equality holds:

detζD2
R,P = (2R)2h e2CR2

ζ
D2

Y
(0)+hY det∗

(
2Id − (σ1σ2)− − (σ1σ2)

−1
−

4

)
where h is the number of (+1)-eigenvalues of (σ1σ2)−, hY = dim ker(DY ) and C =
(�(s)−1ζD2

Y
(s − 1/2))′(0) with ζD2

Y
(s) the ζ -function of D2

Y .

This exact value is used to determine certain constants appearing in the gluing formulae
of the ζ -determinants of Dirac Laplacians in [12, 13]. Finally, the authors thank the referees
for helpful comments.

2. Asymptotics of detζD2
R , P as R → ∞

In this section, we derive the asymptotics of detζD2
R,P as R → ∞. This is one of the main

ingredients in the proof of our main theorem.
We decompose L2(NR, S) as follows:

L2(NR, S) = L2([−R,R]; ker(DY )) ⊕ L2([−R,R]; ker(DY )⊥) (2.1)

where ker(DY )⊥ is the orthogonal complement of ker(DY ) in L2(Y, S0). We denote byDR,P (0)

the restriction of DR,P to the first component of the decomposition (2.1). Since DY = 0 on
ker(DY ), the operator DR,P (0) is G∂u with the boundary conditions at {±R} × Y determined
by σ1, σ2.

For DR,P (0), we can compute all the eigenvalues of DR,P (0) explicitly using elementary
ordinary differential equations and we obtain:

Lemma 2.1. The spectrum of DR,P (0) is given by{(
kπ − αj

2

)
(2R)−1

∣∣∣ k ∈ Z, αj ∈ (−π, π ], eiαj ∈ Spec(σ1σ2)−
}

.

Therefore, we can also compute detζDR,P (0)2 explicitly as we now show.

Proposition 2.2. We have the following equality:

detζDR,P (0)2 = (2R)2h2hY det∗
(

2Id − (σ1σ2)− − (σ1σ2)
−1
−

4

)
with h the number of (+1)-eigenvalues of (σ1σ2)− and hY = dim ker(DY ).

Proof. By lemma 2.1, the ζ -function of DR,P (0)2 is given by

ζDR,P (0)2(s) = 2h · (2R)2sπ−2sζ(2s) + F(s)
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where ζ(s) is the Riemann zeta function and the second term is given by

F(s) = (2R)2sπ−2s

hY /2−h∑
j=1

∑
k∈Z

(
k − αj

2π

)−2s

with αj �= 0 in the sum. For the first term, using that ζ(0) = − 1
2 and ζ ′(0) = − 1

2 log(2π),
we obtain

− d

ds

∣∣∣∣
s=0

2h · (2R)2sπ−2sζ(2s) = log(4R)2h. (2.2)

To compute −F ′(0), we use the Hurwitz zeta function defined by

ζ(s, a) =
∞∑

k=0

(k + a)−s for 0 < a < 1

which has the properties ζ(0, a) = 1
2 − a and ζ ′(0, a) = log(�(a)) − 1

2 log(2π). Then F(s)

can be written in terms of the Hurwitz function as

F(s) = (2R)2sπ−2s

hY /2−h∑
j=1

(
ζ

(
2s,

αj

2π

)
+ ζ

(
2s, 1 − αj

2π

))
where we assumed that αj > 0 since

∑
k∈Z

(k−a)−2s = ∑
k∈Z

(k +a)−2s . Using the properties
of the Hurwitz zeta function, we have

−F ′(0) = −2
hY /2−h∑

j=1

(
ζ ′

(
0,

αj

2π

)
+ ζ ′

(
0, 1 − αj

2π

))

= −2
hY /2−h∑

j=1

(
log

(
�

( αj

2π

)
�

(
1 − αj

2π

))
− log(2π)

)

=
hY /2−h∑

j=1

log(4 sin2(αj/2))

where we used �(x)�(1 − x) = π
sin(πx)

. Combining this derivative with the derivative (2.2)
and the fact that

sin2(αj/2) =
(

eiαj /2 − e−iαj /2

2i

)2

= 2 − eiαj − e−iαj

4
completes the proof. �

Since we can split the contributions of detζDR,P (0)2 over each subspace in the
decomposition (2.1) and we already obtained the exact value of detζDR,P (0)2, it remains
to compute the ζ -determinant of the restriction of D2

R,P to the second component in the
decomposition (2.1). Therefore, from now on, we can assume:

The tangential operator DY is invertible. (2.3)

We previously remarked that it is not possible to get the exact form of all the eigenvalues
of DR,P , so we cannot compute detζD2

R,P in a direct way. For this reason, we first consider
the asymptotics of detζD2

R,P as R → ∞.
For functions f (R) > 0, g(R) > 0 defined over (0,∞), f (R) ∼ g(R) means

lim
R→∞

|log f (R) − log g(R)| = 0 ⇐⇒ lim
R→∞

f (R)

g(R)
= 1.

The following proposition is the main result of this section.
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Proposition 2.3. When DY is invertible, we have

detζD2
R,P ∼ 2

ζ
D2

Y
(0)

e2CR

where C = (�(s)−1ζD2
Y
(s − 1/2))′(0) with ζD2

Y
(s) the ζ -function of D2

Y .

Proof. With DR = G(∂u + DY ) over [−R,R] × Y , let DR,− denote the restriction of DR to
[−R, 0] × Y with a boundary condition �< at {0} × Y , and DR,+ denote the restriction of DR

to [0, R] × Y with a boundary condition �> at {0} × Y . We take the square of these operators
and impose Dirichlet boundary conditions over {±R} × Y and denote by D2

R,d , D2
R,d,− and

D2
R,d,+ the resulting operators. Then by proposition 4.1, to be proved later,

detζD2
R,d

detζD2
R,d,− · detζD2

R,d,+

∼ 2
−ζ

D2
Y
(0)

. (2.4)

By proposition 7.1 in [11], we know that

detζD2
R,d = (

detζ
√

D2
Y

)−1
e2RC

∞∏
k=1

(1 − e−4Rµk )2

where C = (�(s)−1ζD2
Y
(s − 1/2))′(0) and {µk} are the positive eigenvalues of DY . It follows

that

detζD2
R,d ∼ (

detζ
√

D2
Y

)−1
e2RC.

Combining this with (2.4), we conclude that

detζD2
R,d,− · detζD2

R,d,+ ∼ 2
ζ
D2

Y
(0)(

detζ
√

D2
Y

)−1
e2RC. (2.5)

Now let D2
R,−,d and D2

R,+,d denote the restrictions of D2
R,P to [−R, 0] ×Y and [0, R] ×Y ,

respectively, with the Dirichlet condition at {0}×Y . Then according to the main result in [11],
which also holds for this case, we have

detζD2
R,P

detζD2
R,−,d · detζD2

R,+,d

= 2
−ζ

D2
Y
(0)

detζRR (2.6)

where RR is the sum of the Dirichlet to Neumann operators for the restriction of D2
R,P to

[−R, 0] × Y and [0, R] × Y . By a direct computation, we find that

detζRR = 2
ζ
D2

Y
(0)(

detζ
√

D2
Y

) ∞∏
k=1

(1 − e−2µkR)−2

∼ 2
ζ
D2

Y
(0)(

detζ
√

D2
Y

)
(2.7)

where {µk} are the positive eigenvalues of DY . Finally, noting that we have detζD2
R,d,− =

detζD2
R,+,d and detζD2

R,d,+ = detζD2
R,−,d , in view of (2.5), (2.6), and (2.7), we obtain

detζD2
R,P ∼ (

detζ
√

D2
Y

)−1
e2RCdetζRR

∼ (
detζ

√
D2

Y

)−1
e2RC

)(
2

ζ
D2

Y
(0)(

detζ
√

D2
Y

)) = 2
ζ
D2

Y
(0)

e2RC.

This completes our proof. �
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3. Proof of theorem 1.1

Let us consider the Dirac type operator G(∂u + DY ) on the infinite cylinder M = ((−∞, 0] ∪
[0,∞)) × Y with boundary conditions �< and �> at the left and right, respectively, of the
two copies of {0} × Y and we denote by D̂P the resulting operator. We decompose M into
M2R = ([−2R, 0] ∪ [0, 2R]) × Y and M2R,∞ = ((−∞,−2R] ∪ [2R,∞)) × Y and obtain
Dirac operators over these by restricting D̂P . On M2R , we then impose the boundary conditions
given by �> at the boundary {−2R} × Y and �< at the boundary {2R} × Y , and on M2R,∞,
we put �< at the boundary {−2R} × Y and �> at the boundary {2R} × Y . Then the resulting
operator over M2R is equivalent to two copies of DR,P . We denote the resulting operator over
M2R,∞ by D̂2R,P .

As remarked in the proof of lemma 8.3 of [13] it follows that

detζ
(
D̂2

P , D̂2
2R,P

)(
detζD2

R,P

)−2
is independent of R (3.1)

where detζ
(
D̂2

P , D̂2
2R,P

)
denotes the relative ζ -determinant of

(
D̂2

P , D̂2
2R,P

)
defined by

detζ
(
D̂2

P , D̂2
2R,P

)
:= exp

(−ζ ′(D̂2
P , D̂2

2R,P , 0
))

with

ζ
(
D̂2

P , D̂2
2R,P , s

)
:= 1

�(s)

∫ ∞

0
t s−1 Tr

(
e−tD̂2

P − e−tD̂2
2R,P

)
dt.

In the following lemma we compute this relative ζ -determinant explicitly.

Lemma 3.1. When DY is invertible, the following equality holds:

detζ
(
D̂2

P , D̂2
2R,P

) = e4CR

where C = (
�(s)−1ζD2

Y
(s − 1/2)

)′
(0) with ζD2

Y
(s) the ζ -function of D2

Y .

Proof. Let {(µk, ϕk)} be the spectral resolution of DY . Then as shown in [1], for ((u, y),

(u′, y ′)) ∈ ([0,∞) × Y )2, we have

e−tD̂2
P =

∑
µk>0

e−tµ2
k√

4πt

[
e−(u−u′)2/4t − e−(u+u′)2/4t

]
ϕk(y) ⊗ ϕk(y

′)

+
∑
µk>0

{
e−tµ2

k√
4πt

[
e−(u−u′)2/4t + e−(u+u′)2/4t

]
−µk eµk(u+u′) erfc

(
u + u′

2
√

t
+ µk

√
t

) }
Gϕk(y) ⊗ Gϕk(y

′) (3.2)

with a similar formula for ((u, y), (u′, y ′)) ∈ ((−∞, 0] × Y )2. Since the heat kernel of D̂2
2R,P

is obtained from e−tD̂2
P by shifts of ±2R, it follows that

Tr
(
e−tD̂2

P − e−tD̂2
2R,P

) = 4R · 1√
4πt

TrY
(
e−tD2

Y

)
.

From this, the claim follows by the standard computation. �

Now taking the logarithm of (3.1) and using lemma 3.1 and proposition 2.3, we see that

2CR − log detζD2
R,P = −ζD2

Y
(0) log 2 + E(R) is independent of R (3.3)

where E(R) → 0 as R → ∞. Since E(R) vanishes as R → ∞, and the expression (3.3) is
constant in R, it follows that E(R) is in fact identically zero. Then setting E(R) = 0 in (3.3)
and then solving for log detζD2

R,P completes the proof of theorem 1.1.
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4. Adiabatic decomposition of ζ-determinant

The aim of this section is to prove the following proposition, which was used in the proof of
proposition 2.3.

Proposition 4.1. When DY is invertible, we have

detζD2
R,d

detζD2
R,d,− · detζD2

R,d,+

∼ 2
−ζ

D2
Y
(0)

.

For simplicity we use the notation D2
R,� for the operator

D2
R,d,− ⊕ D2

R,d,+ : dom
(
D2

R,d,−
) ⊕ dom

(
D2

R,d,+

) → L2([−R, 0] × Y, S) ⊕ L2([0, R] × Y, S).

Then the log of the left-hand side of proposition 4.1 can be written as

log detζD2
R,d − log detζD2

R,d,− − log detζD2
R,d,+

= − d

ds

∣∣∣∣
s=0

1

�(s)

∫ ∞

0
t s−1 Tr

(
e−tD2

R,d − e−tD2
R,�

)
dt. (4.1)

The fundamental idea to prove proposition 4.1 is to construct a parametrix for e−tD2
R,d −e−tD2

R,�

up to an error term that vanishes as R → ∞. Because the arguments below are similar to
those in [15], we shall omit some details which the reader can find in [15].

We introduce a smooth even function ρ(a, b) : R → [0, 1] that is equal to 0 for
−a � u � a and equal to 1 for b � |u|. We now define

φ1 = 1 − ρ((5/7)R, (6/7)R) ψ1 = 1 − ψ2

φ2 = ρ((1/7)R, (2/7)R) ψ2 = ρ((3/7)R, (4/7)R).

We now define parametrices of the heat kernels ER(t; x, x ′) of D2
R,d , where (x, x ′) ∈ N2

R and
ER,�(t; x, x ′) of D2

R,�, where (x, x ′) ∈ M2
R . To do so, we consider the heat kernel of −∂2

u +D2
Y

over R × Y , which we denote by

E(t; x, x ′) := 1√
4πt

e−(u−u′)2/4t e−tD2
Y (y, y ′) (4.2)

where (x, x ′) ∈ (R × Y )2 with x = (u, y), x ′ = (u′, y ′). For e−tD̂2
P defined in the previous

section, we put EP (t; x, x ′) := e−tD̂2
P (x, x ′), where (x, x ′) ∈ M2. Now we define the

parametrices by

QR(t; x, x ′) = φ1(x)E(t; x, x ′)ψ1(x
′) + φ2(x)ER(t; x, x ′)ψ2(x

′)
QR,�(t; x, x ′) = φ1(x)EP (t; x, x ′)ψ1(x

′) + φ2(x)ER,�(t; x, x ′)ψ2(x
′)

where φi(x) = φi(u) with x = (u, y) and ψi(x
′) is defined similarly. By Duhamel’s principle,

we can estimate the difference of the real heat kernels and these parametrices. We refer the
proof of the following lemma to [15, lemma 1.5].

Lemma 4.2. For any t > 0, there are positive constants c1, c2, c3 such that

‖ER(t; x, x ′) − QR(t; x, x ′)‖ � c1 ec2t−c3(R
2/t)

‖ER,�(t; x, x ′) − QR,�(t; x, x ′)‖ � c1 ec2t−c3(R
2/t)

where (x, x ′) ∈ N2
R,M2

R , respectively, and ‖·‖ denotes the norm for an element in end(Sx ′ , Sx).



7388 P Loya and J Park

We are now ready to prove proposition 4.1. First, we note that since DY is invertible by
assumption, as R → ∞ all the eigenvalues of D2

R,d and D2
R,� are bounded below by a positive

constant c. Hence we have∣∣Tr
(
e−tD2

R,d − e−tD2
R,�

)∣∣ � e−c(t−1)
∣∣ Tr

(
e−D2

R,d − e−D2
R,�

)∣∣ � c′ vol(NR) e−c(t−1) � c′′R e−ct

for positive constants c′, c′′. Henceforth we fix 0 < ε < 1. Then from these inequalities, it is
straightforward to show that

1

�(s)

∫ ∞

Rε

t s−1 Tr
(
e−tD2

R,d − e−tD2
R,�

)
dt → 0 as R → ∞.

Here, the convergence means that this holomorphic function and its derivative converge to the
zero function uniformly over some compact neighbourhood of s = 0. Thus, for the purpose
of evaluating the asymptotics of (4.1), we can ignore this large time integral and focus on the
small time integral

1

�(s)

∫ Rε

0
t s−1 Tr

(
e−tD2

R,d − e−tD2
R,�

)
dt. (4.3)

Applying lemma 4.2, this integral is equal to

1

�(s)

∫ Rε

0
t s−1 Tr(QR − QR,�) dt (4.4)

modulo a term vanishing as R → ∞, where again, vanishing means that the concerned
error function and its derivative converge to the zero function uniformly over some compact
neighbourhood of s = 0. From the explicit formulae (4.2) and (3.2), and recalling that (3.2)
only represents e−tD̂2

P for u, u′ � 0 and there is a similar formula for u, u′ � 0, it follows that
(4.4) is equal to

1

�(s)

∫ Rε

0
t s−1

∫ ∞

0
2

∑
µk>0

ψ1(u)µk e2µku erfc

(
u√
t

+ µk

√
t

)
du dt

modulo a term vanishing as R → ∞. To evaluate the right-hand side, we integrate by parts to
get∫ ∞

0
2

∑
µk>0

ψ1(u)µk e2µku erfc

(
u√
t

+ µk

√
t

)
du

= 1√
πt

Tr
(
e−tD2

Y

) ∫ ∞

0
ψ1(u) e−u2/t du −

∑
µk>0

erfc(µk

√
t)

−
∫ ∞

0

∑
µk>0

ψ ′
1(u) e2µku erfc

(
u√
t

+ µk

√
t

)
du.

Now by proposition 2.1 of [15],

− 1

�(s)

∫ Rε

0
t s−1

∫ ∞

0

∑
µk>0

ψ ′
1(u) e2µku erfc

(
u√
t

+ µk

√
t

)
du dt

vanishes as R → ∞. Therefore, the nontrivial contribution to the asymptotics of (4.3) is given
by

1

�(s)

∫ Rε

0
t s−1

Tr
(
e−tD2

Y

)
√

πt

∫ ∞

0
ψ1(u) e−u2/t du −

∑
µk>0

erfc(µk

√
t)

 dt.
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Up to a term vanishing as R → ∞, we can remove ψ1(u) and then adding the large time
integral

∫ ∞
Rε , which gives rise to another term vanishing as R → ∞, we can see that the final

contribution to (4.3) is given by the integral

1

�(s)

∫ ∞

0
t s−1

Tr
(
e−tD2

Y

)
√

πt

∫ ∞

0
e−u2/t du −

∑
µk>0

erfc(µk

√
t)

 dt.

Using an integration by parts argument (or a table of Mellin transforms), we can evaluate
this integral as 1

2

(
1 − �(s+1/2)

�(s+1)
√

π

)
ζD2

Y
(s). Finally we obtain

− d

ds

∣∣∣∣
s=0

(
1

2

(
1 − �(s + 1/2)

�(s + 1)
√

π

)
ζD2

Y
(s)

)
= −ζD2

Y
(0) log 2

which completes our proof.

5. Gluing and comparison formulae of the ζ-determinant

In this section, for the case of the finite cylinder, we illustrate the gluing and comparison
formulae of the ζ -determinant proved in [12, 14].

Let D be a Dirac type operator acting on C∞(M, S), where M is a closed compact
Riemannian manifold of arbitrary dimension and S is a Clifford bundle over M. Suppose
that M = M− ∪ M+ is partitioned into a union of manifolds with a common boundary
Y = ∂M− = ∂M+. We assume that all geometric structures are of product type over a
tubular neighbourhood N of Y, where D takes the product form (1.1). By restriction of D, we
obtain Dirac type operators D± over M±. We impose the boundary conditions given by the
orthogonalized Calderón projectors C± for D± and we denote by DC± the resulting operators,

DC± = D± with dom
(
DC±

)
:= {φ ∈ H 1(M±, S) | C±(φ|Y ) = 0}.

Here, we recall that the Calderón projectors C± are the projectors defined intrinsically as the
unique orthogonal projectors onto the infinite-dimensional Cauchy data spaces of D±:

{φ|Y |φ ∈ C∞(M±, S),D±φ = 0} ⊂ C∞(Y, S0)

where S0 := S|Y . The gluing problem for the ζ -determinant is to describe the ‘defect’

detζD2

detζD2
C+

· detζD2
C−

= ?

in terms of recognizable data. To describe the solution in [12], we need to introduce some
notations. The Calderón projectors C± have the matrix forms

C± = 1

2

(
Id κ−1

±
κ± Id

)
(5.1)

with respect to the decomposition C∞(Y, S0) = C∞(Y, S+) ⊕ C∞(Y, S−), where S± ⊂ S0

are the subbundles defined as the (±i)-eigenspaces of G. Here, the maps κ± : C∞(Y, S+) →
C∞(Y, S−) are isometries, so that U := −κ−κ−1

+ is a unitary operator over C∞(Y, S−).
Furthermore, U is of Fredholm determinant class. We denote by Û the restriction of U to the
orthogonal complement of its (−1)-eigenspace. We also put

L :=
hM∑
k=1

γ0Uk ⊗ γ0Uk
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where hM = dim ker(D), γ0 is the restriction map from M to Y and {Uk} is an orthonormal basis
of ker(D). Then L is a positive operator on the finite-dimensional vector space γ0(ker(D)).
We now have all the ingredients to state the following gluing formula [12]:

detζD2

detζD2
C− · detζD2

C+

= 2
−ζ

D2
Y
(0)−hY

(detL)−2 detF

(
2Id + Û + Û−1

4

)
(5.2)

where hY = dim ker(DY ) and detF denotes the Fredholm determinant. There is a similar
formula for manifolds with cylindrical ends [13].

Using theorem 1.1, let us verify the gluing formula (5.2) for the Dirac type operator DR,P

of the form (1.1) on NR = [−R,R] × Y with boundary conditions (1.2), where we partition
NR into

NR = NR,− ∪ NR,+ NR,− = [−R, 0] × Y NR,+ = [0, R] × Y.

We denote by DR,− and DR,+ the restrictions of DR,P to NR,− and NR,+, respectively, with the
boundary conditions at {0} × Y given by their corresponding Calderón projectors CR,− and
CR,+, respectively. It is easy to check that CR,− = �< + Id−σ1

2 �0 and CR,+ = �> + Id−σ2
2 �0.

Now it is straightforward to confirm that

detζD2
R,P

detζD2
R,− · detζD2

R,+

= 2
−ζ

D2
Y
(0)−hY

(2R)2h det∗
(

2Id − (σ1σ2)− − (σ1σ2)
−1
−

4

)
where we used theorem 1.1 to compute the left-hand side. Comparing this and (5.2), we see
that the following equalities should hold:

(detL)−2 = (2R)2h

detF

(
2Id + Û + Û−1

4

)
= det∗

(
2Id − (σ1σ2)− − (σ1σ2)

−1
−

4

)
(5.3)

where U and L are the operators defined before, but now for our finite cylinder operator DR,P .
To verify the first equality in (5.3), we note by definition of DR,P ,

ker(DR,P ) = {ϕ ∈ ker(DY ) | σ1ϕ = −ϕ and σ2ϕ = −ϕ}. (5.4)

It follows that projecting onto S− gives an isomorphism of ker(DR,P ) to the (+1)-eigenspace of
(σ1σ2)−, thus dim ker(DR,P ) = h. Moreover, if {ϕk} is an orthonormal basis for the right-hand
side of (5.4), then the operator L is given by

L =
h∑

k=1

1√
2R

ϕk ⊗ 1√
2R

ϕk.

This implies the first equality in (5.3). To verify the second equality in (5.3), note that by the
definition of U and the formulae for CR,±, we have

U = Id over P −(ker(DY ))⊥ U = −(σ1σ2)− over P −(ker(DY ))

where P − = Id+iG
2 is the projection onto S−. This implies the second equality in (5.3). In

conclusion, we can see that the gluing formula (5.2) is compatible with theorem 1.1 for the
case of D2

R,P over NR .
We now explain the comparison formula proved in [14]. To this end, we consider the

smooth, self-adjoint Grassmannian Gr∗
∞(D±), which consists of orthogonal projections P±

such that GP± = (Id − P±)G and P± − C± are smoothing operators. For P1 ∈ Gr∗
∞(D−),

let κ1 : C∞(Y, S+) → C∞(Y, S−) be the map that determines P1 as κ± does C± in (5.1).
Let DP1 denote the operator D− on M− with the boundary condition given by P1. Let P1 be
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the orthogonal projection of C∞(Y, S0) onto the finite-dimensional vector space ker(DP1)|Y .
Then we introduce a linear map

L1 = −P1GR−1
− GP1 over ker(DP1)|Y

where R− is the sum of the Dirichlet to Neumann maps on the double of M− defined as
follows. If we denote the double of M− by M̃ = M− ∪ (−M−) and the double of D− by D̃,
then for any ϕ ∈ C∞(Y, S0), there are unique φ1 ∈ C∞(M−, S) and φ2 ∈ C∞(−M−, S) that
are continuous at Y with value ϕ such that D̃2φi = 0, i = 1, 2, off of Y. Then

R−ϕ := ∂uφ1|Y − ∂uφ2|Y . (5.5)

In [14], we prove that L1 is a positive operator so that detL1 is a positive real number. Now
the main result of [14] states that

detζD2
P1

detζD2
C−

= (detL1)
2 · detF

(
2Id + Û1 + Û−1

1

4

)
(5.6)

where Û1 is the restriction of U1 := κ−κ−1
1 to the orthogonal complement of its (−1)-

eigenspace. The formula (5.6) generalizes Scott’s formula [17] to the case when DP1 is not
invertible.

Let us verify the comparison formula in (5.6) for DR,− on NR,− using theorem 1.1. To
this end, we define DR,1 by replacing the boundary condition CR,− = �< + Id−σ1

2 �0 with
�< + Id+σ̃1

2 �0 at {0}×Y , where σ̃1 is an involution over ker(DY ) anticommuting with G. Then

detζD2
R,1

detζD2
R,−

= R2h1 det∗
(

2Id − (σ1σ̃1)− − (σ1σ̃1)
−1
−

4

)
(5.7)

with h1 is the number of (+1)-eigenvalues of (σ1σ̃1)− and where we used theorem 1.1 to
compute the left-hand side. Hence, comparing the formulae (5.6) and (5.7), we can see that
the following equalities should hold:

(detL1)
2 = R2h1

detF

(
2Id + Û1 + Û−1

1

4

)
= det∗

(
2Id − (σ1σ̃1)− − (σ1σ̃1)

−1
−

4

)
(5.8)

where U1 and L1 are the operators explained above, but now for our operators DR,1,DR,−.
The second equality in (5.8) holds by the same reason as we gave for the operator Û before.
For the first equality in (5.8), we note that ker(DR,1) is given by a similar formula to (5.4)
but with σ2 replaced with σ̃1. This implies that dim ker(DR,1) = h1. To find the operator L1,
we recall that L1 = −P1GR−1

− GP1 and now P1 denotes the projection onto ker(DR,1)|{0}×Y .
Since G exchanges Im(P1) and G(Im(P1)), we need to know how R− acts over G(Im(P1)).
To do so, we note that the double of NR,− is just NR and the double of DR,− is just DR together
with the boundary conditions �> + Id+σ1

2 �0 at {−R} × Y and �< + Id−σ1
2 �0 at {R} × Y .

We denote this operator by D̃R,−. Then, given ϕ ∈ G(Im(P1)), one can easily check that
φ1 ∈ C∞(NR,−, S) and φ2 ∈ C∞(NR,+, S) defined by

φ1(u, y) = ϕ + (u/R)ϕ φ2(u, y) = ϕ

satisfy D̃2
R,−φi = 0, i = 1, 2, off of {0} × Y . Thus, we have

L1 = −P1GR−1
− GP1 = RP1.

One can also derive this formula from proposition 7.3 in [11]. This shows that the first
equality in (5.8) holds, and verifies the compatibility of the comparison formula (5.6) with
theorem 1.1.
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We remark that an equality similar to (5.6) holds for the corresponding objects over M+

with the proper changes taking care of the orientation. Let P2 ∈ Gr∗
∞(D+) and let κ2, U2, and

L2 be the corresponding objects for the pair (D+,P2) defined as we did for (D−,P1) before.
Then combining (5.2) with (5.6) and the comparison formula for (D+,P2), one can check that

detζD2

detζD2
P1

· detζD2
P2

= 2
−ζ

D2
Y
(0)−hY

(detL)−2 detF

(
2Id + Û + Û−1

4

)

×
2∏

i=1

(detLi )
−2 · detF

(
2Id + Ûi + Û−1

i

4

)−1

.

For more details on this general gluing formula, see [12]. As with our previous examples, one
can also verify that this general gluing formula is compatible with theorem 1.1.
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